Real-time auto-adaptive margin generation for MLC-tracked radiotherapy.
نویسندگان
چکیده
In radiotherapy, abdominal and thoracic sites are candidates for performing motion tracking. With real-time control it is possible to adjust the multileaf collimator (MLC) position to the target position. However, positions are not perfectly matched and position errors arise from system delays and complicated response of the electromechanic MLC system. Although, it is possible to compensate parts of these errors by using predictors, residual errors remain and need to be compensated to retain target coverage. This work presents a method to statistically describe tracking errors and to automatically derive a patient-specific, per-segment margin to compensate the arising underdosage on-line, i.e. during plan delivery. The statistics of the geometric error between intended and actual machine position are derived using kernel density estimators. Subsequently a margin is calculated on-line according to a selected coverage parameter, which determines the amount of accepted underdosage. The margin is then applied onto the actual segment to accommodate the positioning errors in the enlarged segment. The proof-of-concept was tested in an on-line tracking experiment and showed the ability to recover underdosages for two test cases, increasing [Formula: see text] in the underdosed area about [Formula: see text] and [Formula: see text], respectively. The used dose model was able to predict the loss of dose due to tracking errors and could be used to infer the necessary margins. The implementation had a running time of 23 ms which is compatible with real-time requirements of MLC tracking systems. The auto-adaptivity to machine and patient characteristics makes the technique a generic yet intuitive candidate to avoid underdosages due to MLC tracking errors.
منابع مشابه
Assessment of MLC tracking performance during hypofractionated prostate radiotherapy using real-time dose reconstruction
By adapting to the actual patient anatomy during treatment, tracked multi-leaf collimator (MLC) treatment deliveries offer an opportunity for margin reduction and healthy tissue sparing. This is assumed to be especially relevant for hypofractionated protocols in which intrafractional motion does not easily average out. In order to confidently deliver tracked treatments with potentially reduced ...
متن کاملLung stereotactic body radiotherapy with an MR-linac – Quantifying the impact of the magnetic field and real-time tumor tracking
BACKGROUND AND PURPOSE There are concerns that radiotherapy doses delivered in a magnetic field might be distorted due to the Lorentz force deflecting secondary electrons. This study investigates this effect on lung stereotactic body radiotherapy (SBRT) treatments, conducted either with or without multileaf collimator (MLC) tumor tracking. MATERIAL AND METHODS Lung SBRT treatments with an MR-...
متن کاملToward submillimeter accuracy in the management of intrafraction motion: the integration of real-time internal position monitoring and multileaf collimator target tracking.
PURPOSE We report on an integrated system for real-time adaptive radiation delivery to moving tumors. The system combines two promising technologies-three-dimensional internal position monitoring using implanted electromagnetically excitable transponders and corresponding real-time beam adaptation using a dynamic multileaf collimator (DMLC). METHODS AND MATERIALS In a multi-institutional acad...
متن کاملReal-time dynamic MLC tracking for inversely optimized arc radiotherapy.
BACKGROUND AND PURPOSE Motion compensation with MLC tracking was tested for inversely optimized arc radiotherapy with special attention to the impact of the size of the target displacements and the angle of the leaf trajectory. MATERIALS AND METHODS An MLC-tracking algorithm was used to adjust the MLC positions according to the target movements using information from an optical real-time posi...
متن کاملIntensity modulation delivery techniques: "step & shoot" MLC auto-sequence versus the use of a modulator.
Two intensity modulation radiotherapy (IMRT) delivery systems, the "step & shoot" multileaf collimator (MLC) auto-sequence and the use of an intensity modulator, are compared with emphasis on the dose optimization quality and the treatment irradiation time. The intensity modulation (IM) was created by a dose gradient optimization algorithm which maximizes the target dose uniformity while mainta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 62 1 شماره
صفحات -
تاریخ انتشار 2017